Notions of isoclinism for rings, with applications

3 July 2013

Steve Buckley
Dept of Maths and Stats, NUI Maynooth, Ireland

Noncommutative Rings and their Applications
Lens, 1-4 July 2013

What is isoclinism?

- P. Hall introduced isoclinism for groups (1940).
- He generalized it to isologism wrt a group variety (also 1940).

What is isoclinism?

- P. Hall introduced isoclinism for groups (1940).
- He generalized it to isologism wrt a group variety (also 1940).
- These are equivalence relations, coarser than isomorphism, and are important tools in modern group theory.

What is isoclinism?

- P. Hall introduced isoclinism for groups (1940).
- He generalized it to isologism wrt a group variety (also 1940).
- These are equivalence relations, coarser than isomorphism, and are important tools in modern group theory.
- Analogous isoclinism concepts for:
- Rings (Kruse and Price, 1969);
- Lie algebras (Moneyhun, 1994).

What is isoclinism?

- P. Hall introduced isoclinism for groups (1940).
- He generalized it to isologism wrt a group variety (also 1940).
- These are equivalence relations, coarser than isomorphism, and are important tools in modern group theory.
- Analogous isoclinism concepts for:
- Rings (Kruse and Price, 1969);
- Lie algebras (Moneyhun, 1994).
- These do not appear to be as widely useful as the group concepts.

What is isoclinism?

- P. Hall introduced isoclinism for groups (1940).
- He generalized it to isologism wrt a group variety (also 1940).
- These are equivalence relations, coarser than isomorphism, and are important tools in modern group theory.
- Analogous isoclinism concepts for:
- Rings (Kruse and Price, 1969);
- Lie algebras (Moneyhun, 1994).
- These do not appear to be as widely useful as the group concepts.
- Here we discuss a different, and flexible, concept of isoclinism/isologism.

What is isoclinism?

- P. Hall introduced isoclinism for groups (1940).
- He generalized it to isologism wrt a group variety (also 1940).
- These are equivalence relations, coarser than isomorphism, and are important tools in modern group theory.
- Analogous isoclinism concepts for:
- Rings (Kruse and Price, 1969);
- Lie algebras (Moneyhun, 1994).
- These do not appear to be as widely useful as the group concepts.
- Here we discuss a different, and flexible, concept of isoclinism/isologism.
- Our concept is defined in a universal algebra context but has various applications in combinatorial ring theory.

Associativity and spectra

The formal "noncommutative polynomial" $f(X, Y)=a X Y+b Y X, a, b \in \mathbb{Z}$, is a symbol of

$$
f^{R}: R \times R \rightarrow R, \quad f^{R}(x, y):=a x y+b y x,
$$

defined whenever R is a PN (= possibly nonassociative) ring. Now let

$$
\operatorname{Pr}_{f}(R):=\frac{\left|\left\{(x, y) \in R \times R: f^{R}(x, y)=0\right\}\right|}{|R|^{2}} \quad(\text { if }|R|<\infty) .
$$

Associativity and spectra

The formal "noncommutative polynomial" $f(X, Y)=a X Y+b Y X, a, b \in \mathbb{Z}$, is a symbol of

$$
f^{R}: R \times R \rightarrow R, \quad f^{R}(x, y):=a x y+b y x
$$

defined whenever R is a PN (= possibly nonassociative) ring. Now let

$$
\left.\operatorname{Pr}_{f}(R):=\frac{\left|\left\{(x, y) \in R \times R: f^{R}(x, y)=0\right\}\right|}{|R|^{2}} \quad \text { (if }|R|<\infty\right)
$$

The \boldsymbol{f}-spectrum of a class \mathcal{C} of finite PN rings is now

$$
\mathfrak{S}_{f}(\mathcal{C}):=\left\{\operatorname{Pr}_{f}(R) \mid R \in \mathcal{C}\right\} .
$$

Associativity and spectra

The formal "noncommutative polynomial" $f(X, Y)=a X Y+b Y X, a, b \in \mathbb{Z}$, is a symbol of

$$
f^{R}: R \times R \rightarrow R, \quad f^{R}(x, y):=a x y+b y x,
$$

defined whenever R is a PN (= possibly nonassociative) ring. Now let

$$
\operatorname{Pr}_{f}(R):=\frac{\left|\left\{(x, y) \in R \times R: f^{R}(x, y)=0\right\}\right|}{|R|^{2}} \quad(\text { if }|R|<\infty) .
$$

The f-spectrum of a class \mathcal{C} of finite PN rings is now

$$
\mathfrak{S}_{f}(\mathcal{C}):=\left\{\operatorname{Pr}_{f}(R) \mid R \in \mathcal{C}\right\} .
$$

Associativity makes no difference for any of these spectra!

Theorem 1 (B.)

If $\mathcal{C}_{1}:=\{$ finite rings $\}, \quad \mathcal{C}_{2}:=\{$ finite $P N$ rings $\}, \quad$ and $f(X, Y):=a X Y+b Y X, a, b \in \mathbb{Z}$, then

$$
\mathfrak{S}_{f}\left(\mathcal{C}_{1}\right)=\mathfrak{S}_{f}\left(\mathcal{C}_{2}\right) .
$$

Spectral containments

We use special names and notation for $\operatorname{Pr}_{f}(R)$ and $\mathfrak{S}_{f}(\mathcal{C})$ in connection with two fundamental functions f of this type.

- $f(X, Y)=X Y-Y X$: commuting probability $\operatorname{Pr}_{\mathrm{c}}(R)$ and commuting spectrum $\mathfrak{S}_{\mathrm{c}}(\mathcal{C})$;
- $f(X, Y)=X Y$: annihilating probability $\operatorname{Pr}_{\text {ann }}(R)$ and annihilating spectrum $\mathfrak{S}_{\text {ann }}(\mathcal{C})$.

$$
\begin{aligned}
& \text { Theorem } 2 \text { (B.) } \\
& \begin{aligned}
\text { If } \mathcal{C}:=\{\text { finite rings }\} \text {, and } f(X, Y):=a X Y+b Y X, a, b \in \mathbb{Z} \text {, then } \\
\qquad \mathfrak{S}_{f}(\mathcal{C}) \subseteq \mathfrak{S}_{\text {ann }}(\mathcal{C}) .
\end{aligned}
\end{aligned}
$$

Definitions

The commuting probability of a finite ring R is

$$
\operatorname{Pr}_{\mathrm{c}}(R):=\frac{|\{(x, y) \in R \times R: x y=y x\}|}{|R|^{2}}
$$

If G is a finite group, similarly define $\operatorname{Pr}_{c}(G)$.
The commuting spectrum $\mathfrak{S}_{\mathrm{c}}(\mathcal{C})$ is defined as before.

Definitions

The commuting probability of a finite ring R is

$$
\operatorname{Pr}_{\mathrm{c}}(R):=\frac{|\{(x, y) \in R \times R: x y=y x\}|}{|R|^{2}}
$$

If G is a finite group, similarly define $\operatorname{Pr}_{c}(G)$.
The commuting spectrum $\mathfrak{S}_{\mathrm{c}}(\mathcal{C})$ is defined as before.

- $\mathfrak{R}=\mathfrak{S}_{\mathfrak{c}}\{$ finite (possibly non-unital) rings $\}$
$\mathfrak{R}_{\boldsymbol{p}}=\mathfrak{S}_{\mathcal{C}}\{$ finite (possibly non-unital) p-rings $\}, p$ prime.
$\mathfrak{G}=\mathfrak{S}_{\mathrm{c}}\{$ finite groups $\}$

Definitions

The commuting probability of a finite ring R is

$$
\operatorname{Pr}_{\mathrm{c}}(R):=\frac{|\{(x, y) \in R \times R: x y=y x\}|}{|R|^{2}}
$$

If G is a finite group, similarly define $\operatorname{Pr}_{c}(G)$.
The commuting spectrum $\mathfrak{S}_{\mathrm{c}}(\mathcal{C})$ is defined as before.

- $\mathfrak{R}=\mathfrak{S}_{c}\{$ finite (possibly non-unital) rings $\}$
$\mathfrak{R}_{p}=\mathfrak{S}_{c}\{$ finite (possibly non-unital) p-rings $\}, p$ prime.
$\mathfrak{G}=\mathfrak{S}_{\mathrm{c}}\{$ finite groups $\}$
- Trivially, $\mathfrak{R} \subset(0,1] \cap \mathbb{Q}$.
- $\operatorname{Pr}\left(R_{1} \oplus R_{2}\right)=\operatorname{Pr}\left(R_{1}\right) \operatorname{Pr}\left(R_{2}\right)$.

The commuting probability of a finite ring R is

$$
\operatorname{Pr}_{\mathrm{c}}(R):=\frac{|\{(x, y) \in R \times R: x y=y x\}|}{|R|^{2}}
$$

If G is a finite group, similarly define $\operatorname{Pr}_{c}(G)$.
The commuting spectrum $\mathfrak{S}_{\mathrm{c}}(\mathcal{C})$ is defined as before.

- $\mathfrak{R}=\mathfrak{S}_{c}\{$ finite (possibly non-unital) rings $\}$
$\mathfrak{R}_{p}=\mathfrak{S}_{c}\{$ finite (possibly non-unital) p-rings $\}, p$ prime.
$\mathfrak{G}=\mathfrak{S}_{\mathrm{c}}\{$ finite groups $\}$
- Trivially, $\mathfrak{R} \subset(0,1] \cap \mathbb{Q}$.
- $\operatorname{Pr}\left(R_{1} \oplus R_{2}\right)=\operatorname{Pr}\left(R_{1}\right) \operatorname{Pr}\left(R_{2}\right)$.
- $\Re_{p} \cap(0,1) \subset\left(0, \alpha_{p}\right]$, where $\alpha_{p}=\left(p^{2}+p-1\right) / p^{3}($ MacHale, 1976).

Definitions

The commuting probability of a finite ring R is

$$
\operatorname{Pr}_{\mathrm{c}}(R):=\frac{|\{(x, y) \in R \times R: x y=y x\}|}{|R|^{2}}
$$

If G is a finite group, similarly define $\operatorname{Pr}_{c}(G)$.
The commuting spectrum $\mathfrak{S}_{c}(\mathcal{C})$ is defined as before.

- $\mathfrak{R}=\mathfrak{S}_{\mathrm{C}}\{$ finite (possibly non-unital) rings $\}$
$\mathfrak{R}_{p}=\mathfrak{S}_{c}\{$ finite (possibly non-unital) p-rings $\}, p$ prime.
$\mathfrak{G}=\mathfrak{S}_{\mathrm{c}}\{$ finite groups $\}$
- Trivially, $\mathfrak{R} \subset(0,1] \cap \mathbb{Q}$.
- $\operatorname{Pr}\left(R_{1} \oplus R_{2}\right)=\operatorname{Pr}\left(R_{1}\right) \operatorname{Pr}\left(R_{2}\right)$.
- $\Re_{p} \cap(0,1) \subset\left(0, \alpha_{p}\right]$, where $\alpha_{p}=\left(p^{2}+p-1\right) / p^{3}($ MacHale, 1976 $)$.
- Much more known about groups e.g.
$\mathfrak{G} \cap(11 / 32,1]$ completely understood (Rusin, 1979).

The commuting probability of a finite ring R is

$$
\operatorname{Pr}_{\mathrm{c}}(R):=\frac{|\{(x, y) \in R \times R: x y=y x\}|}{|R|^{2}}
$$

If G is a finite group, similarly define $\operatorname{Pr}_{c}(G)$.
The commuting spectrum $\mathfrak{S}_{\mathrm{c}}(\mathcal{C})$ is defined as before.

- $\mathfrak{R}=\mathfrak{S}_{c}\{$ finite (possibly non-unital) rings $\}$
$\mathfrak{R}_{p}=\mathfrak{S}_{c}\{$ finite (possibly non-unital) p-rings $\}, p$ prime.
$\mathfrak{G}=\mathfrak{S}_{\mathrm{c}}\{$ finite groups $\}$
- Trivially, $\mathfrak{R} \subset(0,1] \cap \mathbb{Q}$.
- $\operatorname{Pr}\left(R_{1} \oplus R_{2}\right)=\operatorname{Pr}\left(R_{1}\right) \operatorname{Pr}\left(R_{2}\right)$.
- $\Re_{p} \cap(0,1) \subset\left(0, \alpha_{p}\right]$, where $\alpha_{p}=\left(p^{2}+p-1\right) / p^{3}($ MacHale, 1976 $)$.
- Much more known about groups e.g. $\mathfrak{G} \cap(11 / 32,1]$ completely understood (Rusin, 1979).
- Semigroups entirely different (MacHale, 1990; Ponomarenko and Selinski, 2012; B. 2013)

\mathfrak{R} versus \mathfrak{G}

\mathfrak{R} versus \mathfrak{G}

$$
\left\{\left.\frac{2^{2 k}+1}{2^{2 k+1}} \right\rvert\, k \in \mathbb{N}\right\} \cup\left\{1, \frac{7}{16}, \frac{11}{27}, \frac{25}{64}, \frac{11}{32}\right\}
$$

Values of $\operatorname{Pr}_{\mathrm{c}}(R)$ in $[11 / 32,1]$
(B.-MacHale-Ní Shé)

\mathfrak{R} versus \mathfrak{G}

$$
\left\{\left.\frac{2^{2 k}+1}{2^{2 k+1}} \right\rvert\, k \in \mathbb{N}\right\} \cup\left\{1, \frac{7}{16}, \frac{11}{27}, \frac{25}{64}, \frac{11}{32}\right\}
$$

Values of $\operatorname{Pr}_{\mathrm{c}}(R)$ in $[11 / 32,1]: R$ direct sum of \mathbb{Z}_{p}-algebras (B.-MacHale-NíShé)

\mathfrak{R} versus \mathfrak{G}

Values of $\operatorname{Pr}_{\mathrm{c}}(G)$ in $[11 / 32,1]$

\mathfrak{R} versus \mathfrak{G}

$$
\left\{\left.\frac{2^{2 k}+1}{2^{2 k+1}} \right\rvert\, k \in \mathbb{N}\right\} \cup\left\{1, \frac{7}{16}, \frac{11}{27}, \frac{25}{64}, \frac{11}{32}\right\}
$$

Values of $\operatorname{Pr}_{c}(G)$ in $[11 / 32,1]: G$ nilpotent (class 2$)$

Large values of the commuting probability
We define

$$
\alpha_{p}=\frac{p^{2}+p-1}{p^{3}}, \quad \beta_{p}=\frac{2 p^{2}-1}{p^{4}}, \quad \text { and } \gamma_{p}=\frac{p^{3}+p^{2}-1}{p^{5}} .
$$

Note that

$$
\gamma_{p}<\alpha_{p}^{2}<\beta_{p}<\frac{1}{p}<\alpha_{p}, \quad p \geq 2 .
$$

Large values of the commuting probability
We define

$$
\alpha_{p}=\frac{p^{2}+p-1}{p^{3}}, \quad \beta_{p}=\frac{2 p^{2}-1}{p^{4}}, \quad \text { and } \gamma_{p}=\frac{p^{3}+p^{2}-1}{p^{5}} .
$$

Note that

$$
\gamma_{p}<\alpha_{p}^{2}<\beta_{p}<\frac{1}{p}<\alpha_{p}, \quad p \geq 2 .
$$

Theorem 3 (B.-MacHale-Ní Shé)

$$
\begin{aligned}
\Re_{p} \cap\left[\gamma_{p}, 1\right] & =\{1\} \cup\left\{\left.\frac{p^{2 k}+p-1}{p^{2 k+1}} \right\rvert\, k \in \mathbb{N}\right\} \cup\left\{\beta_{p}, \alpha_{p}^{2}, \gamma_{p}\right\} . \\
\Re \cap\left[\gamma_{2}, 1\right] & =\left(\Re_{2} \cap\left[\gamma_{2}, 1\right]\right) \cup\left\{\alpha_{3}\right\} \\
& =\{1\} \cup\left\{\left.\frac{2^{2 k}+1}{2^{2 k+1}} \right\rvert\, k \in \mathbb{N}\right\} \cup\left\{\frac{7}{16}, \frac{11}{27}, \frac{25}{64}, \frac{11}{32}\right\} .
\end{aligned}
$$

Commuting probability and Z-isoclinism

Theorem 4 (B.-MacHale-Ní Shé)
$\operatorname{Pr}(R)=t$ uniquely determines Z-isoclinism type of $R \in C$ if:

- $t \in \mathfrak{R}_{p} \cap\left(\gamma_{p}, 1\right], C=\{p$-rings $\}$.
- $t \in \mathfrak{R} \cap\left(\gamma_{2}, 1\right], C=\{$ finite rings $\}$.

Commuting probability and Z-isoclinism

Theorem 4 (B.-MacHale-Ní Shé)
$\operatorname{Pr}(R)=t$ uniquely determines Z-isoclinism type of $R \in C$ if:

- $t \in \Re_{p} \cap\left(\gamma_{p}, 1\right], C=\{p$-rings $\}$.
- $t \in \mathfrak{R} \cap\left(\gamma_{2}, 1\right], C=\{$ finite rings $\}$.

Theorem 5 (B.-MacHale-Ní Shé)
p-rings R with $\operatorname{Pr}(R)=\gamma_{p}$ yield exactly:

Commuting probability and Z-isoclinism

Theorem 4 (B.-MacHale-Ní Shé)
$\operatorname{Pr}(R)=t$ uniquely determines Z-isoclinism type of $R \in C$ if:

- $t \in \mathfrak{R}_{p} \cap\left(\gamma_{p}, 1\right], C=\{p$-rings $\}$.
- $t \in \mathfrak{R} \cap\left(\gamma_{2}, 1\right], C=\{$ finite rings $\}$.

Theorem 5 (B.-MacHale-Ní Shé)
p-rings R with $\operatorname{Pr}(R)=\gamma_{p}$ yield exactly:

- five Z-isoclinism types;

Commuting probability and Z-isoclinism

Theorem 4 (B.-MacHale-Ní Shé)
$\operatorname{Pr}(R)=t$ uniquely determines Z-isoclinism type of $R \in C$ if:

- $t \in \mathfrak{R}_{p} \cap\left(\gamma_{p}, 1\right], C=\{p-r i n g s\}$.
- $t \in \Re \cap\left(\gamma_{2}, 1\right], C=\{$ finite rings $\}$.

Theorem 5 (B.-MacHale-Ní Shé)
p-rings R with $\operatorname{Pr}(R)=\gamma_{p}$ yield exactly:

- five Z-isoclinism types;
- four $R / Z(R)$ group isomorphism types;

Commuting probability and Z-isoclinism

Theorem 4 (B.-MacHale-Ní Shé)
$\operatorname{Pr}(R)=t$ uniquely determines Z-isoclinism type of $R \in C$ if:

- $t \in \mathfrak{R}_{p} \cap\left(\gamma_{p}, 1\right], C=\{p$-rings $\}$.
- $t \in \mathfrak{R} \cap\left(\gamma_{2}, 1\right], C=\{$ finite rings $\}$.

Theorem 5 (B.-MacHale-Ní Shé)
p-rings R with $\operatorname{Pr}(R)=\gamma_{p}$ yield exactly:

- five Z-isoclinism types;
- four $R / Z(R)$ group isomorphism types;
- three $[R, R]$ group isomorphism types.

First steps

$$
\operatorname{Pr}(R)=\frac{1}{|R|} \sum_{x \in R} \frac{1}{|R / C(x)|}=\frac{1}{|R|^{2}} \sum_{x \in R}|C(x)|
$$

First steps

$$
\begin{aligned}
\operatorname{Pr}(R) & =\frac{1}{|R|} \sum_{x \in R} \frac{1}{|R / C(x)|}=\frac{1}{|R|^{2}} \sum_{x \in R}|C(x)| \\
& =\frac{1}{|R / Z(R)|} \sum_{x+Z(R) \in R / Z(R)} \frac{1}{|R / C(x)|},
\end{aligned}
$$

(sum over one representative of each coset)

First steps

$$
\begin{aligned}
\operatorname{Pr}(R) & =\frac{1}{|R|} \sum_{x \in R} \frac{1}{|R / C(x)|}=\frac{1}{|R|^{2}} \sum_{x \in R}|C(x)| \\
& =\frac{1}{|R / Z(R)|} \sum_{x+Z(R) \in R / Z(R)} \frac{1}{|R / C(x)|},
\end{aligned}
$$

(sum over one representative of each coset)

Observation

For $x \in R$, additive groups $R / C(x)$ and $[x, R]$ are isomorphic. In particular, if R is a \mathbb{Z}_{p}-algebra, $\operatorname{dim} R / C(x)=\operatorname{dim}[x, R]$.

Z-Isoclinism

Definition

Rings R and S are Z-isoclinic if there are additive group isomorphisms $\phi: R / Z(R) \rightarrow S / Z(S)$ and $\psi:[R, R] \rightarrow[S, S]$ such that

$$
\psi([u, v])=\left[u^{\prime}, v^{\prime}\right]
$$

whenever

$$
\phi(u+Z(R))=u^{\prime}+Z(S) \quad \text { and } \quad \phi(v+Z(R))=v^{\prime}+Z(S) .
$$

Z-Isoclinism

Definition

Rings R and S are Z-isoclinic if there are additive group isomorphisms $\phi: R / Z(R) \rightarrow S / Z(S)$ and $\psi:[R, R] \rightarrow[S, S]$ such that

$$
\psi([u, v])=\left[u^{\prime}, v^{\prime}\right]
$$

whenever

$$
\phi(u+Z(R))=u^{\prime}+Z(S) \quad \text { and } \quad \phi(v+Z(R))=v^{\prime}+Z(S) .
$$

Kruse and Price's and Moneyhun's notions of isoclinism for rings and Lie algebras involve ring isomorphisms.

Isoclinism properties

- Z-isoclinism is an equivalence relation.
- Isomorphic \Rightarrow Z-isoclinic; converse false.
- Z-isoclinism class determines gp isomorphism classes of $R / Z(R)$ and $[R, R]$.
- Z-isoclinism induces group isomorphisms of $[x, R]$ subgroups.
- If R and S are Z-isoclinic, then $\operatorname{Pr}(R)=\operatorname{Pr}(S)$.

Universal algebras: definition

If S is any set, $S^{\times 0}:=\{\emptyset\}$, and $S^{\times m}$ is the cartesian product of m copies of S, $m \in \mathbb{N}$.

Universal algebras: definition

If S is any set, $S^{\times 0}:=\{\emptyset\}$, and $S^{\times m}$ is the cartesian product of m copies of S, $m \in \mathbb{N}$.

An algebra \boldsymbol{A} consists of an underlying set, also denoted A, with associated fundamental operations $g^{A}: A^{\times n} \rightarrow A$. $n \geq 0$ is the arity of g^{A}.

Universal algebras: definition

If S is any set, $S^{\times 0}:=\{\emptyset\}$, and $S^{\times m}$ is the cartesian product of m copies of S, $m \in \mathbb{N}$.

An algebra A consists of anderlying set, also denoted A, with associated fundamental operations $g^{A}: A^{\times n} \rightarrow A$. $n \geq 0$ is the arity of g^{A}.

We speak of nullary, unary, or binary operations if $n=0, n=1$, or $n=2$, respectively; a nullary operation is a significant constant e.g. 0 or 1 in a unital ring.

Universal algebras: definition

If S is any set, $S^{\times 0}:=\{\emptyset\}$, and $S^{\times m}$ is the cartesian product of m copies of S, $m \in \mathbb{N}$.

An algebra A consists of anderlying set, also denoted A, with associated fundamental operations $g^{A}: A^{\times n} \rightarrow A$.
$n \geq 0$ is the arity of g^{A}.
We speak of nullary, unary, or binary operations if $n=0, n=1$, or $n=2$, respectively; a nullary operation is a significant constant e.g. 0 or 1 in a unital ring.

If g^{A} is n-ary, write $g^{A}(\underline{x})$ to mean $g^{A}\left(x_{1}, \ldots, x_{n}\right)$.
Each x_{i} is a coordinate of \underline{x}.
The coordinate set of \underline{x} is $\operatorname{CS}(\underline{x})=\left\{x_{1}, \ldots, x_{n}\right\}$.

Distributive algebras: definition

Suppose $(A,+)$ an abelian group, and g^{A} is n-ary, $n \in \mathbb{N}$. g^{A} is distributive over addition if

$$
g^{A}(\underline{z})=g^{A}(\underline{x})+g^{A}(\underline{y})
$$

whenever $z_{j}=x_{j}+y_{j}$ for some j, \quad and $\quad z_{k}=x_{k}=y_{k}$ for $k \neq j$.

Distributive algebras: definition

Suppose $(A,+)$ an abelian group, and g^{A} is n-ary, $n \in \mathbb{N}$. g^{A} is distributive over addition if

$$
g^{A}(\underline{z})=g^{A}(\underline{x})+g^{A}(\underline{y})
$$

whenever $z_{j}=x_{j}+y_{j}$ for some j, \quad and $\quad z_{k}=x_{k}=y_{k}$ for $k \neq j$.

Definition

Suppose I is an index set and $\rho: I \rightarrow \mathbb{N}$.
An (I, ρ)-algebra is an abelian group $(A,+)$ with $\rho(i)$-ary operations g_{i}^{A} on $A, i \in I$, that are distributive over + whenever $\rho(i)>0 ; A$ has type (I, ρ). A distributive algebra is an (I, ρ)-algebra for some type (I, ρ).

Distributive algebras: definition

Suppose $(A,+)$ an abelian group, and g^{A} is n-ary, $n \in \mathbb{N}$. g^{A} is distributive over addition if

$$
g^{A}(\underline{z})=g^{A}(\underline{x})+g^{A}(\underline{y})
$$

whenever $z_{j}=x_{j}+y_{j}$ for some j, \quad and $\quad z_{k}=x_{k}=y_{k}$ for $k \neq j$.

Definition

Suppose I is an index set and $\rho: I \rightarrow \mathbb{N}$.
An (I, ρ)-algebra is an abelian group $(A,+)$ with $\rho(i)$-ary operations g_{i}^{A} on $A, i \in I$, that are distributive over + whenever $\rho(i)>0 ; A$ has type (I, ρ). A distributive algebra is an (I, ρ)-algebra for some type (I, ρ).

If $|I|$ is small, convenient to let $I=\{1, \ldots, k\}$ and write the type as [$\rho(1), \ldots, \rho(k)]$, so:

- PN rings and [2]-algebras coincide;
- a unital PN ring is a special kind of [2, 0]-algebra.

Distributive algebras: definition

Suppose $(A,+)$ an abelian group, and g^{A} is n-ary, $n \in \mathbb{N}$. g^{A} is distributive over addition if

$$
g^{A}(\underline{z})=g^{A}(\underline{x})+g^{A}(\underline{y})
$$

whenever $z_{j}=x_{j}+y_{j}$ for some j, \quad and $\quad z_{k}=x_{k}=y_{k}$ for $k \neq j$.

Definition

Suppose I is an index set and $\rho: I \rightarrow \mathbb{N}$.
An (I, ρ)-algebra is an abelian group $(A,+)$ with $\rho(i)$-ary operations g_{i}^{A} on $A, i \in I$, that are distributive over + whenever $\rho(i)>0$; A has type (I, ρ). A distributive algebra is an (I, ρ)-algebra for some type (I, ρ).

If $|I|$ is small, convenient to let $I=\{1, \ldots, k\}$ and write the type as $[\rho(1), \ldots, \rho(k)]$, so:

- PN rings and [2]-algebras coincide;
- a unital PN ring is a special kind of [2, 0]-algebra.

The reduced index set I_{0} consists of all $i \in I$ such that $\rho(i)>0$, and $\rho_{0}:=\left.\rho\right|_{I_{0}}$. (I_{0}, ρ_{0}) is the reduced type corresponding to the type (I, ρ).

Ideals and quotients

Definition

An ideal in an (I, ρ)-algebra \boldsymbol{A} is a subgp J of $(A,+)$ such that $g_{i}^{A}(\underline{x}) \in J$ whenever $i \in I_{0}, \underline{x} \in A^{\times \rho(i)}$, and $\operatorname{CS}(\underline{x}) \cap J$ is nonempty.
We write $J \unlhd A$ or $A \unrhd J$.
An ideal in an (I, ρ)-algebra is an $\left(I_{0}, \rho_{0}\right)$-algebra.

Lemma

If $J \unlhd A$, then A / J naturally has same type as A, with natural maps $g_{i}^{A / J}$.

Annihilators and product ideals

Definition

The annihilator of \boldsymbol{A} is $\operatorname{Ann}(A)=\bigcap_{i \in I_{0}} \operatorname{Ann}(A ; i)$, where
$\operatorname{Ann}(A ; i)=\left\{a \in A \mid \forall \underline{x} \in A^{\times \rho(i)}: a \in \operatorname{CS}(\underline{x}) \Rightarrow g_{i}^{A}(\underline{x})=0\right\}, \quad i \in I_{0}$.

Annihilators and product ideals

Definition

The annihilator of A is $\operatorname{Ann}(A)=\bigcap_{i \in 1_{0}} \operatorname{Ann}(A ; i)$, where

$$
\operatorname{Ann}(A ; i)=\left\{a \in A \mid \forall \underline{x} \in A^{\times \rho(i)}: a \in \operatorname{CS}(\underline{x}) \Rightarrow g_{i}^{A}(\underline{x})=0\right\}, \quad i \in I_{0} .
$$

Definition

The product ideal of $A, \pi(A)$, is the subgroup of $(A,+)$ generated by elements of $\pi(A ; i), i \in I_{0}$, where $\pi(A, i)$ is the subgroup of $(A,+)$ generated by $g_{i}^{A}(\underline{x}), \underline{x} \in A^{\times \rho(i)}$.

Annihilators and product ideals

Definition

The annihilator of A is $\operatorname{Ann}(A)=\bigcap_{i \in 1_{0}} \operatorname{Ann}(A ; i)$, where

$$
\operatorname{Ann}(A ; i)=\left\{a \in A \mid \forall \underline{x} \in A^{\times \rho(i)}: a \in \operatorname{CS}(\underline{x}) \Rightarrow g_{i}^{A}(\underline{x})=0\right\}, \quad i \in I_{0} .
$$

Definition

The product ideal of $A, \pi(A)$, is the subgroup of $(A,+)$ generated by elements of $\pi(A ; i), i \in I_{0}$, where $\pi(A, i)$ is the subgroup of $(A,+)$ generated by $g_{i}^{A}(\underline{x}), \underline{x} \in A^{\times \rho(i)}$.

Null algebra: $\operatorname{Ann}(A)=A$, or equivalently $\pi(A)=0$.

Remark

$g_{i}^{A / A n n(A)}$ factors through A to give natural map $\tilde{g}_{i}^{A}:(A / \operatorname{Ann}(A))^{\times n} \rightarrow A$.

Annihilator series

Definition

A finite sequence of ideals $\left(A_{j}\right)_{j=0}^{m}, m \geq 0$, in an (I, ρ)-algebra A is an annihilator series (of length \boldsymbol{m}) if $A_{0}=A, A_{m}=0$,

$$
A_{0} \unrhd A_{1} \unrhd \cdots A_{m}
$$

and $A_{j-1} / A_{j} \leq \operatorname{Ann}\left(A / A_{j}\right)$ for $1 \leq i \leq m$.
A is nilpotent if it has an annihilator series.

Annihilator series

Definition

A finite sequence of ideals $\left(A_{j}\right)_{j=0}^{m}, m \geq 0$, in an (I, ρ)-algebra A is an annihilator series (of length m) if $A_{0}=A, A_{m}=0$,

$$
A_{0} \unrhd A_{1} \unrhd \cdots A_{m}
$$

and $A_{j-1} / A_{j} \leq \operatorname{Ann}\left(A / A_{j}\right)$ for $1 \leq i \leq m$.
A is nilpotent if it has an annihilator series.
The exponent, $\exp (A)$, is the minimal length of an annihilator series of A.

Annihilator series

Definition

A finite sequence of ideals $\left(A_{j}\right)_{j=0}^{m}, m \geq 0$, in an (I, ρ)-algebra A is an annihilator series (of length m) if $A_{0}=A, A_{m}=0$,

$$
A_{0} \unrhd A_{1} \unrhd \cdots A_{m}
$$

and $A_{j-1} / A_{j} \leq \operatorname{Ann}\left(A / A_{j}\right)$ for $1 \leq i \leq m$.
A is nilpotent if it has an annihilator series.
The exponent, $\exp (A)$, is the minimal length of an annihilator series of A.

We can define upper and lower annihilator series, as done by Kruse and Price for rings.

Definition

An isoclinism from one (I, ρ)-algebra A to another one B consists of a pair of additive group isomorphisms

$$
\phi: A / \operatorname{Ann}(A) \rightarrow B / \operatorname{Ann}(B) \text { and } \psi: \pi(A) \rightarrow \pi(B)
$$

such that if $i \in I_{0}, \phi\left(x_{j}+\operatorname{Ann}(A)\right)=y_{j}+\operatorname{Ann}(B), j=1, \ldots, \rho(i)$, then

$$
\psi\left(g_{i}^{A}(\underline{x})\right)=g_{i}^{B}(\underline{y}) .
$$

(As usual, I_{0} is the reduced index set.)

Isoclinism

Definition

An isoclinism from one (I, ρ)-algebra A to another one B consists of a pair of additive group isomorphisms

$$
\phi: A / \operatorname{Ann}(A) \rightarrow B / \operatorname{Ann}(B) \text { and } \psi: \pi(A) \rightarrow \pi(B)
$$

such that if $i \in I_{0}, \phi\left(x_{j}+\operatorname{Ann}(A)\right)=y_{j}+\operatorname{Ann}(B), j=1, \ldots, \rho(i)$, then

$$
\psi\left(g_{i}^{A}(\underline{x})\right)=g_{i}^{B}(\underline{y}) .
$$

(As usual, I_{0} is the reduced index set.)

Alternative definition:

A and B are isoclinic via (ϕ, ψ) if and only if the above diagram is commutative for each $i \in I_{0}$ and $n:=\rho(i)$.

Theorem

- Isoclinism is an equivalence relation on distributive algebras of any given type; equivalence classes are called isoclinism families.
- All null algebras of a given type are isoclinic.
- If $\left(\phi_{j}, \psi_{j}\right)$ is an isoclinism from one (I, ϕ)-algebra A_{j} to another one B_{j}, for all $j \in J \neq \emptyset$, then $\prod_{j \in J} A_{j}$ is isoclinic to $\prod_{j \in J} B_{j}$, and $\bigoplus_{j \in J} A_{j}$ is isoclinic to $\bigoplus_{j \in J} B_{j}$.
- Isomorphic algebras are isoclinic.

Canonical form

Definition

A distributive algebra A has canonical form if:
(1) $(A,+)$ is the internal direct sum of subgroups A_{1} and A_{2}.
(2) $\pi(A)=\operatorname{Ann}(A)=A_{2}$.

A canonical form member of an isoclinism family is called a canonical relative of all algebras in that family.

Canonical form

Definition

A distributive algebra A has canonical form if:
(1) $(A,+)$ is the internal direct sum of subgroups A_{1} and A_{2}.
(2) $\pi(A)=\operatorname{Ann}(A)=A_{2}$.

A canonical form member of an isoclinism family is called a canonical relative of all algebras in that family.

Theorem

- Canonical relatives exist and are unique (up to isomorphism).
- Distributive algebras A and B are isoclinic if and only if their canonical relatives $\operatorname{Can}(A)$ and $\operatorname{Can}(B)$ are isomorphic.
- A canonical form distributive algebra is nilpotent of exponent ≤ 2.
- Nilpotency is not an isoclinism invariant.

Invariant probability functions

Let

$$
\operatorname{Pr}\left(A ; g_{i}^{A}, n\right):=\frac{\left|\left\{\underline{a} \in A^{\times n}: g_{i}^{A}(\underline{a})=0\right\}\right|}{|A|^{n}} .
$$

Invariant probability functions

Let

$$
\operatorname{Pr}\left(A ; g_{i}^{A}, n\right):=\frac{\left|\left\{\underline{a} \in A^{\times n}: g_{i}^{A}(\underline{a})=0\right\}\right|}{|A|^{n}}
$$

Lemma

Suppose (ϕ, ψ) is an isoclinism from one finite (I, ρ)-algebra A to another B. Then $\operatorname{Pr}\left(A ; g_{i}^{A}, n\right)=\operatorname{Pr}\left(B ; g_{i}^{B}, n\right)$ for all $i \in I$ and $n:=\rho(i)$.

Invariant probability functions

Let

$$
\operatorname{Pr}\left(A ; g_{i}^{A}, n\right):=\frac{\left|\left\{\underline{a} \in A^{\times n}: g_{i}^{A}(\underline{a})=0\right\}\right|}{|A|^{n}}
$$

Lemma

Suppose (ϕ, ψ) is an isoclinism from one finite (I, ρ)-algebra A to another B. Then $\operatorname{Pr}\left(A ; g_{i}^{A}, n\right)=\operatorname{Pr}\left(B ; g_{i}^{B}, n\right)$ for all $i \in I$ and $n:=\rho(i)$.

The argument in the above lemma can be generalized. In particular, we can replace g_{i}^{A} by $f^{A}: A^{\times m} \rightarrow A$, where

$$
f^{A}\left(x_{1}, \ldots, x_{m}\right):=g_{i}^{A}\left(\sum_{j=1}^{m} a_{1 j} x_{j}, \ldots, \sum_{j=1}^{m} a_{n j} x_{j}\right)
$$

One simple example is $f^{A}(x)=g^{A}(x, x)$ in a PN ring A where $g^{A}(x, y)=x y$. So the proportion of dinilpotents (elements satisfying $x^{2}=0$) is an isoclinism invariant for PN rings.

Spectral identity

Theorem

Let $\mathcal{C}_{0}, \mathcal{C}_{1}$, and \mathcal{C}_{2} be the classes of all finite nilpotent rings of exponent at most 2, all finite rings, and all finite PN rings, respectively. Then for all $f(X, Y):=a X Y+b Y X, a, b \in \mathbb{Z}$, and all classes \mathcal{C} such that $\mathcal{C}_{0} \subseteq \mathcal{C} \subseteq \mathcal{C}_{2}$,

$$
\mathfrak{S}_{f}(\mathcal{C})=\mathfrak{S}_{f}\left(\mathcal{C}_{1}\right)
$$

Spectral identity

Theorem
Let C_{0}, \mathcal{C}_{1}, and \mathcal{C}_{2} be the classes of all finite nilpotent rings of exponent at most 2, all finite rings, and all finite PN rings, respectively. Then for all $f(X, Y):=a X Y+b Y X, a, b \in \mathbb{Z}$, and all classes \mathcal{C} such that $\mathcal{C}_{0} \subseteq \mathcal{C} \subseteq \mathcal{C}_{2}$,

$$
\mathfrak{S}_{f}(\mathcal{C})=\mathfrak{S}_{f}\left(\mathcal{C}_{1}\right)
$$

Above theorem works for other function symbols f such as $f(X)=X^{2}$, so the sets of possible dinilpotent proportions in finite rings and in finite PN rings coincide.

Spectral identity

Theorem
Let C_{0}, \mathcal{C}_{1}, and \mathcal{C}_{2} be the classes of all finite nilpotent rings of exponent at most 2, all finite rings, and all finite PN rings, respectively. Then for all $f(X, Y):=a X Y+b Y X, a, b \in \mathbb{Z}$, and all classes \mathcal{C} such that $\mathcal{C}_{0} \subseteq \mathcal{C} \subseteq \mathcal{C}_{2}$,

$$
\mathfrak{S}_{f}(\mathcal{C})=\mathfrak{S}_{f}\left(\mathcal{C}_{1}\right)
$$

Above theorem works for other function symbols f such as $f(X)=X^{2}$, so the sets of possible dinilpotent proportions in finite rings and in finite PN rings coincide.

However idempotent proportion is not an isoclinism invariant and the sets of possible idempotent proportions in finite rings and in finite PN rings do not coincide (B.-Yu. Zelenyuk; work in progress)

