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Overview 2/21

What is isoclinism?

P. Hall introduced isoclinism for groups (1940).

He generalized it to isologism wrt a group variety (also 1940).

These are equivalence relations, coarser than isomorphism, and are important
tools in modern group theory.

Analogous isoclinism concepts for:

Rings (Kruse and Price, 1969);
Lie algebras (Moneyhun, 1994).
These do not appear to be as widely useful as the group concepts.

Here we discuss a different, and flexible, concept of isoclinism/isologism.

Our concept is defined in a universal algebra context but has various
applications in combinatorial ring theory.
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Associativity and spectra

The formal “noncommutative polynomial” f (X ,Y ) = aXY + bYX , a, b ∈ Z, is a
symbol of

f R : R × R → R, f R(x , y) := axy + byx ,

defined whenever R is a PN (= possibly nonassociative) ring. Now let

Prf (R) :=
|{(x , y) ∈ R × R : f R(x , y) = 0}|

|R|2
(if |R| <∞).

The fff -spectrum of a class C of finite PN rings is now

Sf (C) := {Prf (R) | R ∈ C} .

Associativity makes no difference for any of these spectra!

Theorem 1 (B.)

If C1 := {finite rings}, C2 := {finite PN rings}, and
f (X ,Y ) := aXY + bYX , a, b ∈ Z, then

Sf (C1) = Sf (C2) .
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Spectral containments

We use special names and notation for Prf (R) and Sf (C) in connection with two
fundamental functions f of this type.

f (X ,Y ) = XY − YX : commuting probability Prc(R)Prc(R)Prc(R) and commuting
spectrum Sc(C)Sc(C)Sc(C);

f (X ,Y ) = XY : annihilating probability Prann(R)Prann(R)Prann(R) and annihilating
spectrum Sann(C)Sann(C)Sann(C).

Theorem 2 (B.)

If C := {finite rings}, and f (X ,Y ) := aXY + bYX , a, b ∈ Z, then

Sf (C) ⊆ Sann(C) .
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Definitions

The commuting probability of a finite ring R is

Prc(R) :=
|{(x , y) ∈ R × R : xy = yx}|

|R|2

If G is a finite group, similarly define Prc(G ).
The commuting spectrum Sc(C) is defined as before.

RRR = Sc{finite (possibly non-unital) rings}
RpRpRp = Sc{finite (possibly non-unital) p-rings}, p prime.
GGG = Sc{finite groups}

Trivially, R ⊂ (0, 1] ∩Q.

Pr(R1 ⊕ R2) = Pr(R1) Pr(R2).

Rp ∩ (0, 1) ⊂ (0, αp], where αp = (p2 + p − 1)/p3 (MacHale, 1976).

Much more known about groups e.g.
G ∩ (11/32, 1] completely understood (Rusin, 1979).

Semigroups entirely different (MacHale, 1990; Ponomarenko and Selinski,
2012; B. 2013)
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R versus G

15/817/3211/2711/32
7/1625/64 1/2

Here Be
Dragons

1/22/53/8

{
22k + 1

22k+1

∣∣∣∣ k ∈ N
}
∪
{

1,
7

16
,

11

27
,

25

64
,

11

32

}

∪
{

1

2
,

2

5
,

3

8

}

Values of Prc(R) in [11/32, 1] (B.-MacHale-Ńı Shé)Values of Prc(R) in [11/32, 1]: R direct sum of Zp-algebras (B.-MacHale-Ńı Shé)Values of Prc(G ) in [11/32, 1]Values of Prc(G ) in [11/32, 1]: G nilpotent (class 2)
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Large values of the commuting probability

We define
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Commuting probability and Z-isoclinism

Theorem 4 (B.-MacHale-Ńı Shé)

Pr(R) = t uniquely determines Z-isoclinism type of R ∈ C if:

t ∈ Rp ∩ (γp, 1], C = {p-rings}.
t ∈ R ∩ (γ2, 1], C = {finite rings}.

Theorem 5 (B.-MacHale-Ńı Shé)

p-rings R with Pr(R) = γp yield exactly:

five Z-isoclinism types;

four R/Z (R) group isomorphism types;

three [R,R] group isomorphism types.
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p-rings R with Pr(R) = γp yield exactly:

five Z-isoclinism types;

four R/Z (R) group isomorphism types;

three [R,R] group isomorphism types.



Applications of isoclinism Main results 8/21

Commuting probability and Z-isoclinism

Theorem 4 (B.-MacHale-Ńı Shé)
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First steps

Pr(R) =
1

|R|
∑
x∈R

1

|R/C (x)|
=

1

|R|2
∑
x∈R

|C (x)|

=
1

|R/Z (R)|
∑

x+Z(R)∈R/Z(R)

1

|R/C (x)|
,

(sum over one representative of each coset)

Observation

For x ∈ R, additive groups R/C (x) and [x ,R] are isomorphic.
In particular, if R is a Zp-algebra, dim R/C (x) = dim[x ,R].
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Z-Isoclinism

Definition

Rings R and S are Z-isoclinic if there are additive group isomorphisms
φ : R/Z (R)→ S/Z (S) and ψ : [R,R]→ [S ,S ] such that

ψ([u, v ]) = [u′, v ′]
whenever

φ(u + Z (R)) = u′ + Z (S) and φ(v + Z (R)) = v ′ + Z (S).

Kruse and Price’s and Moneyhun’s notions of isoclinism for rings and Lie algebras
involve ring isomorphisms.
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Isoclinism properties

Z-isoclinism is an equivalence relation.

Isomorphic ⇒ Z-isoclinic; converse false.

Z-isoclinism class determines gp isomorphism classes of R/Z (R) and [R,R].

Z-isoclinism induces group isomorphisms of [x ,R] subgroups.

If RRR and SSS are Z-isoclinic, then Pr(R) = Pr(S)Pr(R) = Pr(S)Pr(R) = Pr(S).
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Universal algebras: definition

If S is any set, S×0 := {∅}, and S×m is the cartesian product of m copies of S ,
m ∈ N.

An algebra AAA consists of an underlying set, also denoted A, with associated
fundamental operations gA : A×n → A.
n ≥ 0 is the arity of gAgAgA.

We speak of nullary, unary, or binary operations if n = 0, n = 1, or n = 2,
respectively; a nullary operation is a significant constant e.g. 0 or 1 in a unital ring.

If gA is n-ary, write gA(x) to mean gA(x1, . . . , xn).
Each xi is a coordinate of x .
The coordinate set of xxx is CS(x) = {x1, . . . , xn}.
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Distributive algebras: definition

Suppose (A,+) an abelian group, and gA is n-ary, n ∈ N.
gA is distributive over addition if

gA(z) = gA(x) + gA(y)

whenever zj = xj + yj for some j , and zk = xk = yk for k 6= j .

Definition

Suppose I is an index set and ρ : I → N.
An (I , ρ)(I , ρ)(I , ρ)-algebra is an abelian group (A,+) with ρ(i)-ary operations gA

i on
A, i ∈ I , that are distributive over + whenever ρ(i) > 0; A has type (I , ρ).
A distributive algebra is an (I , ρ)-algebra for some type (I , ρ).

If |I | is small, convenient to let I = {1, . . . , k} and write the type as
[ρ(1), . . . , ρ(k)], so:

PN rings and [2]-algebras coincide;

a unital PN ring is a special kind of [2, 0]-algebra.

The reduced index set I0I0I0 consists of all i ∈ I such that ρ(i) > 0, and ρ0 := ρ|I0ρ0 := ρ|I0ρ0 := ρ|I0 .
(I0, ρ0) is the reduced type corresponding to the type (I , ρ)(I , ρ)(I , ρ).
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Ideals and quotients

Definition

An ideal in an (I , ρ)(I , ρ)(I , ρ)-algebra AAA is a subgp J of (A,+) such that gA
i (x) ∈ J

whenever i ∈ I0, x ∈ A×ρ(i), and CS(x) ∩ J is nonempty.
We write J E A or A D J.

An ideal in an (I , ρ)-algebra is an (I0, ρ0)-algebra.

Lemma

If J E A, then A/J naturally has same type as A, with natural maps g
A/J
i .
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Annihilators and product ideals

Definition

The annihilator of AAA is Ann(A) =
⋂

i∈I0 Ann(A; i), where

Ann(A; i) = {a ∈ A | ∀ x ∈ A×ρ(i) : a ∈ CS(x)⇒ gA
i (x) = 0} , i ∈ I0 .

Definition

The product ideal of AAA, π(A), is the subgroup of (A,+) generated by
elements of π(A; i), i ∈ I0, where π(A, i) is the subgroup of (A,+) generated
by gA

i (x), x ∈ A×ρ(i).

Null algebra: Ann(A) = A, or equivalently π(A) = 0.

Remark

g
A/Ann(A)
i factors through A to give natural map g̃A

i : (A/Ann(A))×n → A .
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Annihilator series

Definition

A finite sequence of ideals (Aj)
m
j=0, m ≥ 0, in an (I , ρ)-algebra A is an

annihilator series (of length mmm) if A0 = A, Am = 0,

A0 D A1 D · · ·Am

and Aj−1/Aj ≤ Ann(A/Aj) for 1 ≤ i ≤ m.

A is nilpotent if it has an annihilator series.

The exponent, exp(A), is the minimal length of an annihilator series of A.

We can define upper and lower annihilator series, as done by Kruse and Price
for rings.
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Isoclinism

Definition

An isoclinism from one (I , ρ)-algebra A to another one B consists of a pair
of additive group isomorphisms

φ : A/Ann(A)→ B/Ann(B) and ψ : π(A)→ π(B)

such that if i ∈ I0, φ(xj + Ann(A)) = yj + Ann(B), j = 1, . . . , ρ(i), then

ψ(gA
i (x)) = gB

i (y).

(As usual, I0 is the reduced index set.)

Alternative definition:

(A/Ann(A))⊗n
φ⊗n

∼=
//

gA;⊗
i
����

(B/Ann(B))⊗n

gB;⊗
i
����

π(A; i)
ψ|π(A,i)

∼=
// π(B; i)

A and B are isoclinic via (φ, ψ) if and only if the above diagram is commutative
for each i ∈ I0 and n := ρ(i).
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Isoclinism: basics

Theorem

Isoclinism is an equivalence relation on distributive algebras of any
given type; equivalence classes are called isoclinism families.

All null algebras of a given type are isoclinic.

If (φj , ψj) is an isoclinism from one (I , φ)-algebra Aj to another one
Bj , for all j ∈ J 6= ∅, then

∏
j∈J Aj is isoclinic to

∏
j∈J Bj , and⊕

j∈J Aj is isoclinic to
⊕

j∈J Bj .

Isomorphic algebras are isoclinic.
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Canonical form

Definition

A distributive algebra A has canonical form if:

1 (A,+) is the internal direct sum of subgroups A1 and A2.

2 π(A) = Ann(A) = A2.

A canonical form member of an isoclinism family is called a canonical rel-
ative of all algebras in that family.

Theorem

Canonical relatives exist and are unique (up to isomorphism).

Distributive algebras A and B are isoclinic if and only if their
canonical relatives Can(A) and Can(B) are isomorphic.

A canonical form distributive algebra is nilpotent of exponent ≤ 2.

Nilpotency is not an isoclinism invariant.
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Invariant probability functions

Let

Pr(A; gA
i , n) :=

|{a ∈ A×n : gA
i (a) = 0}|

|A|n
.

Lemma

Suppose (φ, ψ) is an isoclinism from one finite (I , ρ)-algebra A to another
B. Then Pr(A; gA

i , n) = Pr(B; gB
i , n) for all i ∈ I and n := ρ(i).

The argument in the above lemma can be generalized. In particular, we can
replace gA

i by f A : A×m → A, where

f A(x1, . . . , xm) := gA
i (

m∑
j=1

a1jxj , . . . ,
m∑
j=1

anjxj) ,

One simple example is f A(x) = gA(x , x) in a PN ring A where gA(x , y) = xy . So
the proportion of dinilpotents (elements satisfying x2 = 0) is an isoclinism
invariant for PN rings.
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Spectral identity

Theorem

Let C0, C1, and C2 be the classes of all finite nilpotent rings of exponent
at most 2, all finite rings, and all finite PN rings, respectively. Then for all
f (X ,Y ) := aXY + bYX , a, b ∈ Z, and all classes C such that C0 ⊆ C ⊆ C2,

Sf (C) = Sf (C1) .

Above theorem works for other function symbols f such as f (X ) = X 2, so
the sets of possible dinilpotent proportions in finite rings and in finite PN
rings coincide.

However idempotent proportion is not an isoclinism invariant and the sets of
possible idempotent proportions in finite rings and in finite PN rings do
not coincide (B.–Yu. Zelenyuk; work in progress)
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