# Notions of isoclinism for rings, with applications

3 July 2013

#### Steve Buckley Dept of Maths and Stats, NUI Maynooth, Ireland

#### Noncommutative Rings and their Applications Lens, 1–4 July 2013

- P. Hall introduced **isoclinism** for groups (1940).
- He generalized it to isologism wrt a group variety (also 1940).

- P. Hall introduced **isoclinism** for groups (1940).
- He generalized it to **isologism** wrt a group variety (also 1940).
- These are equivalence relations, coarser than isomorphism, and are important tools in modern group theory.

- P. Hall introduced **isoclinism** for groups (1940).
- He generalized it to isologism wrt a group variety (also 1940).
- These are equivalence relations, coarser than isomorphism, and are important tools in modern group theory.
- Analogous isoclinism concepts for:
  - Rings (Kruse and Price, 1969);
  - Lie algebras (Moneyhun, 1994).

- P. Hall introduced **isoclinism** for groups (1940).
- He generalized it to isologism wrt a group variety (also 1940).
- These are equivalence relations, coarser than isomorphism, and are important tools in modern group theory.
- Analogous isoclinism concepts for:
  - Rings (Kruse and Price, 1969);
  - Lie algebras (Moneyhun, 1994).
  - These do not appear to be as widely useful as the group concepts.

- P. Hall introduced **isoclinism** for groups (1940).
- He generalized it to isologism wrt a group variety (also 1940).
- These are equivalence relations, coarser than isomorphism, and are important tools in modern group theory.
- Analogous isoclinism concepts for:
  - Rings (Kruse and Price, 1969);
  - Lie algebras (Moneyhun, 1994).
  - These do not appear to be as widely useful as the group concepts.
- Here we discuss a different, and flexible, concept of isoclinism/isologism.

- P. Hall introduced **isoclinism** for groups (1940).
- He generalized it to isologism wrt a group variety (also 1940).
- These are equivalence relations, coarser than isomorphism, and are important tools in modern group theory.
- Analogous isoclinism concepts for:
  - Rings (Kruse and Price, 1969);
  - Lie algebras (Moneyhun, 1994).
  - These do not appear to be as widely useful as the group concepts.
- Here we discuss a different, and flexible, concept of isoclinism/isologism.
- Our concept is defined in a **universal algebra context** but has various applications in combinatorial ring theory.

## Associativity and spectra

The formal "noncommutative polynomial" f(X, Y) = aXY + bYX,  $a, b \in \mathbb{Z}$ , is a symbol of

$$f^R: R imes R o R, \qquad f^R(x,y) := \mathsf{a} x y + \mathsf{b} y x \, ,$$

defined whenever R is a PN (= possibly nonassociative) ring. Now let

$$\Pr_f(R) := \frac{|\{(x,y) \in R \times R : f^R(x,y) = 0\}|}{|R|^2} \qquad (\text{if } |R| < \infty).$$

#### Associativity and spectra

The formal "noncommutative polynomial" f(X, Y) = aXY + bYX,  $a, b \in \mathbb{Z}$ , is a symbol of

$$f^R: R imes R o R, \qquad f^R(x, y) := axy + byx,$$

defined whenever R is a PN (= possibly nonassociative) ring. Now let  $\Pr_f(R) := \frac{|\{(x, y) \in R \times R : f^R(x, y) = 0\}|}{|R|^2} \quad (\text{if } |R| < \infty).$ 

The **f**-spectrum of a class C of finite PN rings is now  $\mathfrak{S}_f(C) := \{ \Pr_f(R) \mid R \in C \}.$ 

## Associativity and spectra

The formal "noncommutative polynomial" f(X, Y) = aXY + bYX,  $a, b \in \mathbb{Z}$ , is a symbol of

$$f^R: R imes R o R, \qquad f^R(x, y) := axy + byx,$$

defined whenever R is a PN (= *possibly nonassociative*) ring. Now let

$$\Pr_f(R) := \frac{|\{(x,y) \in R \times R : f^R(x,y) = 0\}|}{|R|^2} \qquad (\text{if } |R| < \infty).$$

The f-spectrum of a class C of finite PN rings is now

$$\mathfrak{S}_f(\mathcal{C}) := \{ \mathsf{Pr}_f(R) \mid R \in \mathcal{C} \}.$$

Associativity makes no difference for any of these spectra!

**Theorem 1 (B.)** If  $C_1 := \{ \text{finite rings} \}$ ,  $C_2 := \{ \text{finite PN rings} \}$ , and f(X, Y) := aXY + bYX,  $a, b \in \mathbb{Z}$ , then  $\mathfrak{S}_f(C_1) = \mathfrak{S}_f(C_2)$ .

# Spectral containments

We use special names and notation for  $Pr_f(R)$  and  $\mathfrak{S}_f(\mathcal{C})$  in connection with two fundamental functions f of this type.

- f(X, Y) = XY YX: commuting probability Pr<sub>c</sub>(R) and commuting spectrum S<sub>c</sub>(C);
- f(X, Y) = XY: annihilating probability  $Pr_{ann}(R)$  and annihilating spectrum  $\mathfrak{S}_{ann}(C)$ .

**Theorem 2 (B.)** If  $C := \{ \text{finite rings} \}$ , and f(X, Y) := aXY + bYX,  $a, b \in \mathbb{Z}$ , then  $\mathfrak{S}_f(C) \subseteq \mathfrak{S}_{ann}(C)$ .

#### The **commuting probability** of a finite ring R is

$$\Pr_{c}(R) := \frac{|\{(x, y) \in R \times R : xy = yx\}|}{|R|^{2}}$$

The **commuting probability** of a finite ring R is

$$\mathsf{Pr}_{\mathsf{c}}(R) := \frac{|\{(x,y) \in R \times R : xy = yx\}|}{|R|^2}$$

The **commuting probability** of a finite ring R is

$$\mathsf{Pr}_{\mathsf{c}}(R) := \frac{|\{(x,y) \in R \times R : xy = yx\}|}{|R|^2}$$

- Trivially,  $\mathfrak{R} \subset (0,1] \cap \mathbb{Q}$ .
- $\Pr(R_1 \oplus R_2) = \Pr(R_1) \Pr(R_2).$

The commuting probability of a finite ring R is

$$\Pr_{c}(R) := \frac{|\{(x, y) \in R \times R : xy = yx\}|}{|R|^{2}}$$

- Trivially,  $\mathfrak{R} \subset (0,1] \cap \mathbb{Q}$ .
- $\operatorname{Pr}(R_1 \oplus R_2) = \operatorname{Pr}(R_1) \operatorname{Pr}(R_2).$
- $\mathfrak{R}_{p} \cap (0,1) \subset (0,\alpha_{p}]$ , where  $\alpha_{p} = (p^{2} + p 1)/p^{3}$  (MacHale, 1976).

The **commuting probability** of a finite ring R is

$$\mathsf{Pr}_{\mathsf{c}}(R) := \frac{|\{(x,y) \in R \times R : xy = yx\}|}{|R|^2}$$

• 
$$\mathfrak{R} = \mathfrak{S}_{c} \{ \text{finite (possibly non-unital) rings} \}$$
  
 $\mathfrak{R}_{p} = \mathfrak{S}_{c} \{ \text{finite (possibly non-unital) } p \text{-rings} \}, p \text{ prime.}$   
 $\mathfrak{G} = \mathfrak{S}_{c} \{ \text{finite groups} \}$ 

- Trivially,  $\mathfrak{R} \subset (0,1] \cap \mathbb{Q}$ .
- $\operatorname{Pr}(R_1 \oplus R_2) = \operatorname{Pr}(R_1) \operatorname{Pr}(R_2).$
- $\mathfrak{R}_{p} \cap (0,1) \subset (0,\alpha_{p}]$ , where  $\alpha_{p} = (p^{2} + p 1)/p^{3}$  (MacHale, 1976).
- Much more known about groups e.g.  $\mathfrak{G} \cap (11/32,1] \text{ completely understood (Rusin, 1979)}.$

The **commuting probability** of a finite ring R is

$$\Pr_{c}(R) := \frac{|\{(x, y) \in R \times R : xy = yx\}|}{|R|^{2}}$$

- Trivially,  $\mathfrak{R} \subset (0,1] \cap \mathbb{Q}$ .
- $\operatorname{Pr}(R_1 \oplus R_2) = \operatorname{Pr}(R_1) \operatorname{Pr}(R_2).$
- $\mathfrak{R}_{p} \cap (0,1) \subset (0,\alpha_{p}]$ , where  $\alpha_{p} = (p^{2} + p 1)/p^{3}$  (MacHale, 1976).
- Much more known about groups e.g.  $\mathfrak{G} \cap (11/32,1] \text{ completely understood (Rusin, 1979)}.$
- Semigroups entirely different (MacHale, 1990; Ponomarenko and Selinski, 2012; B. 2013)



$$\left\{\frac{2^{2k}+1}{2^{2k+1}} \; \middle| \; k \in \mathbb{N}\right\} \cup \left\{1, \frac{7}{16}, \frac{11}{27}, \frac{25}{64}, \frac{11}{32}\right\}$$

Values of  $Pr_c(R)$  in [11/32, 1] (B.-MacHale-Ní Shé)



$$\left\{\frac{2^{2k}+1}{2^{2k+1}} \mid k \in \mathbb{N}\right\} \cup \left\{1, \frac{7}{16}, \frac{11}{27}, \frac{25}{64}, \frac{11}{32}\right\}$$

Values of  $Pr_c(R)$  in [11/32, 1]: R direct sum of  $\mathbb{Z}_p$ -algebras (B.-MacHale-Ní Shé)



$$\left\{\frac{2^{2k}+1}{2^{2k+1}} \mid k \in \mathbb{N}\right\} \cup \left\{1, \frac{7}{16}, \frac{11}{27}, \frac{25}{64}, \frac{11}{32}\right\} \cup \left\{\frac{1}{2}, \frac{2}{5}, \frac{3}{8}\right\}$$

Values of  $Pr_c(G)$  in [11/32, 1]



$$\left\{\frac{2^{2k}+1}{2^{2k+1}} \; \middle| \; k \in \mathbb{N}\right\} \cup \left\{1, \frac{7}{16}, \frac{11}{27}, \frac{25}{64}, \frac{11}{32}\right\}$$

Values of  $Pr_c(G)$  in [11/32, 1]: G nilpotent (class 2)

# Large values of the commuting probability

We define

$$\alpha_{p} = \frac{p^{2} + p - 1}{p^{3}}, \quad \beta_{p} = \frac{2p^{2} - 1}{p^{4}}, \quad \text{and} \ \gamma_{p} = \frac{p^{3} + p^{2} - 1}{p^{5}}.$$

Note that

$$\gamma_{p} < \alpha_{p}^{2} < \beta_{p} < \frac{1}{p} < \alpha_{p}, \qquad p \geq 2.$$

# Large values of the commuting probability

#### We define

$$\alpha_p = \frac{p^2 + p - 1}{p^3}, \quad \beta_p = \frac{2p^2 - 1}{p^4}, \quad \text{and } \gamma_p = \frac{p^3 + p^2 - 1}{p^5},$$

Note that

$$\gamma_p < \alpha_p^2 < \beta_p < \frac{1}{p} < \alpha_p , \qquad p \ge 2 .$$

Theorem 3 (B.-MacHale-Ní Shé)  

$$\mathfrak{R}_{p} \cap [\gamma_{p}, 1] = \{1\} \cup \left\{ \frac{p^{2k} + p - 1}{p^{2k+1}} \mid k \in \mathbb{N} \right\} \cup \left\{ \beta_{p}, \alpha_{p}^{2}, \gamma_{p} \right\}.$$

$$\mathfrak{R} \cap [\gamma_{2}, 1] = (\mathfrak{R}_{2} \cap [\gamma_{2}, 1]) \cup \{\alpha_{3}\}$$

$$= \{1\} \cup \left\{ \frac{2^{2k} + 1}{2^{2k+1}} \mid k \in \mathbb{N} \right\} \cup \left\{ \frac{7}{16}, \frac{11}{27}, \frac{25}{64}, \frac{11}{32} \right\}.$$

Theorem 4 (B.-MacHale-Ní Shé)

Pr(R) = t uniquely determines Z-isoclinism type of  $R \in C$  if:

• 
$$t \in \mathfrak{R}_p \cap (\gamma_p, 1], C = \{p\text{-rings}\}.$$

• 
$$t \in \mathfrak{R} \cap (\gamma_2, 1]$$
,  $C = \{ finite rings \}$ .

Theorem 4 (B.-MacHale-Ní Shé)

Pr(R) = t uniquely determines Z-isoclinism type of  $R \in C$  if:

• 
$$t \in \mathfrak{R}_p \cap (\gamma_p, 1], C = \{p\text{-rings}\}.$$

• 
$$t \in \mathfrak{R} \cap (\gamma_2, 1]$$
,  $C = \{ finite rings \}$ .

**Theorem 5 (B.-MacHale-Ní Shé)** *p*-rings *R* with  $Pr(R) = \gamma_p$  yield exactly:

Theorem 4 (B.-MacHale-Ní Shé)

Pr(R) = t uniquely determines Z-isoclinism type of  $R \in C$  if:

• 
$$t \in \mathfrak{R}_p \cap (\gamma_p, 1], C = \{p\text{-rings}\}.$$

• 
$$t \in \mathfrak{R} \cap (\gamma_2, 1]$$
,  $C = \{ finite rings \}$ .

**Theorem 5 (B.-MacHale-Ní Shé)** *p*-rings *R* with  $Pr(R) = \gamma_p$  yield exactly:

• five Z-isoclinism types;

8/21

Theorem 4 (B.-MacHale-Ní Shé)

Pr(R) = t uniquely determines Z-isoclinism type of  $R \in C$  if:

• 
$$t \in \mathfrak{R}_p \cap (\gamma_p, 1], C = \{p\text{-rings}\}.$$

• 
$$t \in \mathfrak{R} \cap (\gamma_2, 1]$$
,  $C = \{ finite rings \}$ .

**Theorem 5 (B.-MacHale-Ní Shé)** *p*-rings *R* with  $Pr(R) = \gamma_p$  yield exactly:

- five Z-isoclinism types;
- four R/Z(R) group isomorphism types;

Theorem 4 (B.-MacHale-Ní Shé)

Pr(R) = t uniquely determines Z-isoclinism type of  $R \in C$  if:

• 
$$t \in \mathfrak{R}_{p} \cap (\gamma_{p}, 1], C = \{p\text{-rings}\}.$$

• 
$$t \in \mathfrak{R} \cap (\gamma_2, 1]$$
,  $C = \{ finite rings \}$ .

**Theorem 5 (B.-MacHale-Ní Shé)** *p*-rings *R* with  $Pr(R) = \gamma_p$  yield exactly:

- five Z-isoclinism types;
- four R/Z(R) group isomorphism types;
- three [R, R] group isomorphism types.

# First steps

$$\Pr(R) = \frac{1}{|R|} \sum_{x \in R} \frac{1}{|R/C(x)|} = \frac{1}{|R|^2} \sum_{x \in R} |C(x)|$$



(sum over one representative of each coset)

$$\Pr(R) = \frac{1}{|R|} \sum_{x \in R} \frac{1}{|R/C(x)|} = \frac{1}{|R|^2} \sum_{x \in R} |C(x)|$$
$$= \frac{1}{|R/Z(R)|} \sum_{x+Z(R) \in R/Z(R)} \frac{1}{|R/C(x)|},$$

(sum over one representative of each coset)

#### Observation

For  $x \in R$ , additive groups R/C(x) and [x, R] are isomorphic. In particular, if R is a  $\mathbb{Z}_p$ -algebra, dim  $R/C(x) = \dim[x, R]$ .

## Z-Isoclinism

#### Definition

Rings R and S are Z-isoclinic if there are additive group isomorphisms  $\phi: R/Z(R) \to S/Z(S)$  and  $\psi: [R, R] \to [S, S]$  such that  $\psi([u, v]) = [u', v']$  whenever

 $\phi(u + Z(R)) = u' + Z(S)$  and  $\phi(v + Z(R)) = v' + Z(S)$ .

# Z-Isoclinism

**Definition** Rings *R* and *S* are *Z*-isoclinic if there are additive **group isomorphisms**   $\phi: R/Z(R) \to S/Z(S)$  and  $\psi: [R, R] \to [S, S]$  such that  $\psi([u, v]) = [u', v']$ whenever  $\phi(u + Z(R)) = u' + Z(S)$  and  $\phi(v + Z(R)) = v' + Z(S)$ .

Kruse and Price's and Moneyhun's notions of isoclinism for rings and Lie algebras involve ring isomorphisms.

| Isoclinism and joins                  | Isoclinisms | 11/21 |
|---------------------------------------|-------------|-------|
| Isoclinism properties                 |             |       |
| • Z-isoclinism is an equivalence rela | tion.       |       |

- Isomorphic  $\Rightarrow$  Z-isoclinic; converse false.
- Z-isoclinism class determines gp isomorphism classes of R/Z(R) and [R, R].
- Z-isoclinism induces group isomorphisms of [x, R] subgroups.
- If R and S are Z-isoclinic, then Pr(R) = Pr(S).

| Distributive algebras          | Definitions | 12/21 |
|--------------------------------|-------------|-------|
| Universal algebras: definition |             |       |
|                                |             |       |
|                                |             |       |

If S is any set,  $S^{\times 0} := \{\emptyset\}$ , and  $S^{\times m}$  is the cartesian product of *m* copies of S,  $m \in \mathbb{N}$ .

| Distributive algebras                                                                         | Definitions                                               | 12/21 |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------|
| Universal algebras: definition                                                                |                                                           |       |
| If S is any set, $S^{\times 0} := \{\emptyset\}$ , and $S^{\times m}$ is $m \in \mathbb{N}$ . | is the cartesian product of <i>m</i> copies of <i>S</i> , |       |

An **algebra** A consists of an **underlying set**, also denoted A, with associated fundamental operations  $g^A : A^{\times n} \to A$ .  $n \ge 0$  is the **arity of**  $g^A$ .

## Universal algebras: definition

If S is any set,  $S^{\times 0} := \{\emptyset\}$ , and  $S^{\times m}$  is the cartesian product of m copies of S,  $m \in \mathbb{N}$ .

Definitions

An **algebra** A consists of an **underlying set**, also denoted A, with associated fundamental operations  $g^A : A^{\times n} \to A$ .  $n \ge 0$  is the **arity of**  $g^A$ .

We speak of **nullary**, **unary**, or **binary** operations if n = 0, n = 1, or n = 2, respectively; a nullary operation is a significant constant e.g. 0 or 1 in a unital ring.

# Universal algebras: definition

If S is any set,  $S^{\times 0} := \{\emptyset\}$ , and  $S^{\times m}$  is the cartesian product of *m* copies of S,  $m \in \mathbb{N}$ .

Definitions

An **algebra** A consists of an **underlying set**, also denoted A, with associated fundamental operations  $g^A : A^{\times n} \to A$ .  $n \ge 0$  is the **arity of**  $g^A$ .

We speak of **nullary**, **unary**, or **binary** operations if n = 0, n = 1, or n = 2, respectively; a nullary operation is a significant constant e.g. 0 or 1 in a unital ring.

If  $g^A$  is *n*-ary, write  $g^A(\underline{x})$  to mean  $g^A(x_1, \ldots, x_n)$ . Each  $x_i$  is a **coordinate** of  $\underline{x}$ . The **coordinate set of**  $\underline{x}$  is  $CS(\underline{x}) = \{x_1, \ldots, x_n\}$ .

## Distributive algebras: definition

Suppose (A, +) an abelian group, and  $g^A$  is *n*-ary,  $n \in \mathbb{N}$ .  $g^A$  is **distributive over addition** if

$$g^{A}(\underline{z}) = g^{A}(\underline{x}) + g^{A}(\underline{y})$$

whenever  $z_j = x_j + y_j$  for some j, and  $z_k = x_k = y_k$  for  $k \neq j$ .

Definitions

## Distributive algebras: definition

Suppose (A, +) an abelian group, and  $g^A$  is *n*-ary,  $n \in \mathbb{N}$ .  $g^A$  is **distributive over addition** if

g

$$g^{A}(\underline{z}) = g^{A}(\underline{x}) + g^{A}(\underline{y})$$

whenever  $z_j = x_j + y_j$  for some j, and  $z_k = x_k = y_k$  for  $k \neq j$ .

#### Definition

Suppose *I* is an index set and  $\rho: I \to \mathbb{N}$ . An  $(I, \rho)$ -algebra is an abelian group (A, +) with  $\rho(i)$ -ary operations  $g_i^A$  on  $A, i \in I$ , that are distributive over + whenever  $\rho(i) > 0$ ; A has type  $(I, \rho)$ . A distributive algebra is an  $(I, \rho)$ -algebra for some type  $(I, \rho)$ .

Definitions 1 -

## Distributive algebras: definition

Suppose (A, +) an abelian group, and  $g^A$  is *n*-ary,  $n \in \mathbb{N}$ .  $g^A$  is **distributive over addition** if

$$g^{A}(\underline{z}) = g^{A}(\underline{x}) + g^{A}(\underline{y})$$

whenever  $z_j = x_j + y_j$  for some j, and  $z_k = x_k = y_k$  for  $k \neq j$ .

### Definition

Suppose *I* is an index set and  $\rho : I \to \mathbb{N}$ . An  $(I, \rho)$ -algebra is an abelian group (A, +) with  $\rho(i)$ -ary operations  $g_i^A$  on  $A, i \in I$ , that are distributive over + whenever  $\rho(i) > 0$ ; A has type  $(I, \rho)$ . A distributive algebra is an  $(I, \rho)$ -algebra for some type  $(I, \rho)$ .

If |I| is small, convenient to let  $I = \{1, ..., k\}$  and write the type as  $[\rho(1), ..., \rho(k)]$ , so:

- PN rings and [2]-algebras coincide;
- a unital PN ring is a special kind of [2,0]-algebra.

## Distributive algebras: definition

Suppose (A, +) an abelian group, and  $g^A$  is *n*-ary,  $n \in \mathbb{N}$ .  $g^A$  is **distributive over addition** if

$$g^{A}(\underline{z}) = g^{A}(\underline{x}) + g^{A}(\underline{y})$$

whenever  $z_j = x_j + y_j$  for some j, and  $z_k = x_k = y_k$  for  $k \neq j$ .

### Definition

Suppose *I* is an index set and  $\rho: I \to \mathbb{N}$ . An  $(I, \rho)$ -algebra is an abelian group (A, +) with  $\rho(i)$ -ary operations  $g_i^A$  on  $A, i \in I$ , that are distributive over + whenever  $\rho(i) > 0$ ; A has type  $(I, \rho)$ . A distributive algebra is an  $(I, \rho)$ -algebra for some type  $(I, \rho)$ .

If |I| is small, convenient to let  $I = \{1, ..., k\}$  and write the type as  $[\rho(1), ..., \rho(k)]$ , so:

- PN rings and [2]-algebras coincide;
- a unital PN ring is a special kind of [2,0]-algebra.

The reduced index set  $l_0$  consists of all  $i \in I$  such that  $\rho(i) > 0$ , and  $\rho_0 := \rho|_{l_0}$ .  $(l_0, \rho_0)$  is the reduced type corresponding to the type  $(I, \rho)$ .

# Ideals and quotients

## Definition

An **ideal in an**  $(I, \rho)$ -algebra A is a subgp J of (A, +) such that  $g_i^A(\underline{x}) \in J$ whenever  $i \in I_0$ ,  $\underline{x} \in A^{\times \rho(i)}$ , and  $CS(\underline{x}) \cap J$  is nonempty. We write  $J \trianglelefteq A$  or  $A \trianglerighteq J$ .

An ideal in an  $(I, \rho)$ -algebra is an  $(I_0, \rho_0)$ -algebra.

#### Lemma

If  $J \leq A$ , then A/J naturally has same type as A, with natural maps  $g_i^{A/J}$ .

# Annihilators and product ideals

## Definition

The **annihilator of A** is  $Ann(A) = \bigcap_{i \in I_0} Ann(A; i)$ , where

Ann
$$(A; i) = \{ a \in A \mid \forall \underline{x} \in A^{\times \rho(i)} : a \in \mathsf{CS}(\underline{x}) \Rightarrow g_i^A(\underline{x}) = 0 \}, \quad i \in I_0.$$

## Annihilators and product ideals

## Definition

The **annihilator of** A is Ann $(A) = \bigcap_{i \in I_0} Ann(A; i)$ , where

Ann $(A; i) = \{a \in A \mid \forall \underline{x} \in A^{\times \rho(i)} : a \in \mathsf{CS}(\underline{x}) \Rightarrow g_i^A(\underline{x}) = 0\}, \quad i \in I_0.$ 

### Definition

The **product ideal of** A,  $\pi(A)$ , is the subgroup of (A, +) generated by elements of  $\pi(A; i)$ ,  $i \in I_0$ , where  $\pi(A, i)$  is the subgroup of (A, +) generated by  $g_i^A(\underline{x})$ ,  $\underline{x} \in A^{\times \rho(i)}$ .

## Annihilators and product ideals

## Definition

The **annihilator of A** is  $Ann(A) = \bigcap_{i \in I_0} Ann(A; i)$ , where

Ann $(A; i) = \{a \in A \mid \forall \underline{x} \in A^{\times \rho(i)} : a \in \mathsf{CS}(\underline{x}) \Rightarrow g_i^A(\underline{x}) = 0\}, \quad i \in I_0.$ 

### Definition

The **product ideal of** A,  $\pi(A)$ , is the subgroup of (A, +) generated by elements of  $\pi(A; i)$ ,  $i \in I_0$ , where  $\pi(A, i)$  is the subgroup of (A, +) generated by  $g_i^A(\underline{x}), \underline{x} \in A^{\times \rho(i)}$ .

**Null algebra**: Ann(A) = A, or equivalently  $\pi(A) = 0$ .

### Remark

 $g_i^{A/\operatorname{Ann}(A)}$  factors through A to give natural map  $ilde{g}_i^A: (A/\operatorname{Ann}(A))^{ imes n} o A$  .

# Annihilator series

## Definition

A finite sequence of ideals  $(A_j)_{j=0}^m$ ,  $m \ge 0$ , in an  $(I, \rho)$ -algebra A is an **annihilator series (of length** m) if  $A_0 = A$ ,  $A_m = 0$ ,

$$A_0 \supseteq A_1 \supseteq \cdots A_m$$

and  $A_{j-1}/A_j \leq \operatorname{Ann}(A/A_j)$  for  $1 \leq i \leq m$ .

A is **nilpotent** if it has an annihilator series.

# Annihilator series

## Definition

A finite sequence of ideals  $(A_j)_{j=0}^m$ ,  $m \ge 0$ , in an  $(I, \rho)$ -algebra A is an **annihilator series (of length** m) if  $A_0 = A$ ,  $A_m = 0$ ,

$$A_0 \supseteq A_1 \supseteq \cdots A_m$$

and  $A_{j-1}/A_j \leq \operatorname{Ann}(A/A_j)$  for  $1 \leq i \leq m$ .

A is **nilpotent** if it has an annihilator series. The **exponent**, exp(A), is the minimal length of an annihilator series of A.

# Annihilator series

## Definition

A finite sequence of ideals  $(A_j)_{j=0}^m$ ,  $m \ge 0$ , in an  $(I, \rho)$ -algebra A is an **annihilator series (of length** m) if  $A_0 = A$ ,  $A_m = 0$ ,

$$A_0 \supseteq A_1 \supseteq \cdots A_m$$

and  $A_{j-1}/A_j \leq \operatorname{Ann}(A/A_j)$  for  $1 \leq i \leq m$ .

A is **nilpotent** if it has an annihilator series. The **exponent**, exp(A), is the minimal length of an annihilator series of A.

We can define **upper** and **lower annihilator series**, as done by Kruse and Price for rings.

| linism |
|--------|
|        |

#### Definitions

# Isoclinism

## Definition

An **isoclinism** from one  $(I, \rho)$ -algebra A to another one B consists of a pair of additive group isomorphisms

$$\begin{split} \phi &: A/\operatorname{Ann}(A) \to B/\operatorname{Ann}(B) \text{ and } \psi : \pi(A) \to \pi(B) \\ \text{such that if } i \in I_0, \ \phi(x_j + \operatorname{Ann}(A)) = y_j + \operatorname{Ann}(B), \ j = 1, \dots, \rho(i), \text{ then} \\ \psi(g_i^A(\underline{x})) = g_i^B(\underline{y}). \end{split}$$

(As usual,  $I_0$  is the reduced index set.)

| Isoc |  |  |
|------|--|--|
|      |  |  |

#### Definitions

# Isoclinism

## Definition

An **isoclinism** from one  $(I, \rho)$ -algebra A to another one B consists of a pair of additive group isomorphisms

$$\begin{split} \phi &: A/\operatorname{Ann}(A) \to B/\operatorname{Ann}(B) \text{ and } \psi : \pi(A) \to \pi(B) \\ \text{such that if } i \in I_0, \ \phi(x_j + \operatorname{Ann}(A)) = y_j + \operatorname{Ann}(B), \ j = 1, \dots, \rho(i), \text{ then} \\ \psi(g_i^A(\underline{x})) = g_i^B(\underline{y}). \end{split}$$

(As usual,  $I_0$  is the reduced index set.)

## Alternative definition:



A and B are isoclinic via  $(\phi, \psi)$  if and only if the above diagram is commutative for each  $i \in I_0$  and  $n := \rho(i)$ .

# Isoclinism: basics

## Theorem

- Isoclinism is an equivalence relation on distributive algebras of any given type; equivalence classes are called **isoclinism families**.
- All null algebras of a given type are isoclinic.
- If  $(\phi_j, \psi_j)$  is an isoclinism from one  $(I, \phi)$ -algebra  $A_j$  to another one  $B_j$ , for all  $j \in J \neq \emptyset$ , then  $\prod_{j \in J} A_j$  is isoclinic to  $\prod_{j \in J} B_j$ , and  $\bigoplus_{j \in J} A_j$  is isoclinic to  $\bigoplus_{j \in J} B_j$ .

• Isomorphic algebras are isoclinic.

# Canonical form

## Definition

A distributive algebra A has **canonical form** if:

• 
$$(A, +)$$
 is the internal direct sum of subgroups  $A_1$  and  $A_2$ .

$$a (A) = \operatorname{Ann}(A) = A_2.$$

A canonical form member of an isoclinism family is called a **canonical relative** of all algebras in that family.

## Definition

A distributive algebra A has **canonical form** if:

• 
$$(A, +)$$
 is the internal direct sum of subgroups  $A_1$  and  $A_2$ .

$$a \pi(A) = \operatorname{Ann}(A) = A_2.$$

A canonical form member of an isoclinism family is called a **canonical rel-ative** of all algebras in that family.

## Theorem

- Canonical relatives exist and are unique (up to isomorphism).
- Distributive algebras A and B are isoclinic if and only if their canonical relatives Can(A) and Can(B) are isomorphic.
- A canonical form distributive algebra is nilpotent of exponent  $\leq 2$ .
- Nilpotency is not an isoclinism invariant.

# Invariant probability functions

Let

$$\Pr(A; g_i^A, n) := \frac{|\{\underline{a} \in A^{\times n} : g_i^A(\underline{a}) = 0\}|}{|A|^n}$$

## Invariant probability functions

Let

$$\Pr(A; g_i^A, n) := \frac{|\{\underline{a} \in A^{\times n} : g_i^A(\underline{a}) = 0\}|}{|A|^n}$$

#### Lemma

Suppose  $(\phi, \psi)$  is an isoclinism from one finite  $(I, \rho)$ -algebra A to another B. Then  $\Pr(A; g_i^A, n) = \Pr(B; g_i^B, n)$  for all  $i \in I$  and  $n := \rho(i)$ .

## Invariant probability functions

Let

$$\Pr(A; g_i^A, n) := \frac{|\{\underline{a} \in A^{\times n} : g_i^A(\underline{a}) = 0\}|}{|A|^n}$$

#### Lemma

Suppose  $(\phi, \psi)$  is an isoclinism from one finite  $(I, \rho)$ -algebra A to another B. Then  $\Pr(A; g_i^A, n) = \Pr(B; g_i^B, n)$  for all  $i \in I$  and  $n := \rho(i)$ .

The argument in the above lemma can be generalized. In particular, we can replace  $g_i^A$  by  $f^A: A^{\times m} \to A$ , where

$$f^{A}(x_{1},...,x_{m}) := g_{i}^{A}(\sum_{j=1}^{m} a_{1j}x_{j},...,\sum_{j=1}^{m} a_{nj}x_{j}),$$

One simple example is  $f^A(x) = g^A(x, x)$  in a PN ring A where  $g^A(x, y) = xy$ . So the proportion of **dinilpotents** (elements satisfying  $x^2 = 0$ ) is an isoclinism invariant for PN rings.

# Spectral identity

### Theorem

Let  $C_0$ ,  $C_1$ , and  $C_2$  be the classes of all finite nilpotent rings of exponent at most 2, all finite rings, and all finite PN rings, respectively. Then for all f(X, Y) := aXY + bYX,  $a, b \in \mathbb{Z}$ , and all classes C such that  $C_0 \subseteq C \subseteq C_2$ ,  $\mathfrak{S}_f(C) = \mathfrak{S}_f(C_1)$ .

# Spectral identity

#### Theorem

Let  $C_0$ ,  $C_1$ , and  $C_2$  be the classes of all finite nilpotent rings of exponent at most 2, all finite rings, and all finite PN rings, respectively. Then for all f(X, Y) := aXY + bYX,  $a, b \in \mathbb{Z}$ , and all classes C such that  $C_0 \subseteq C \subseteq C_2$ ,  $\mathfrak{S}_f(C) = \mathfrak{S}_f(C_1)$ .

Above theorem works for other function symbols f such as  $f(X) = X^2$ , so the sets of possible dinilpotent proportions in finite rings and in finite PN rings coincide.

# Spectral identity

#### Theorem

Let  $C_0$ ,  $C_1$ , and  $C_2$  be the classes of all finite nilpotent rings of exponent at most 2, all finite rings, and all finite PN rings, respectively. Then for all f(X, Y) := aXY + bYX,  $a, b \in \mathbb{Z}$ , and all classes C such that  $C_0 \subseteq C \subseteq C_2$ ,  $\mathfrak{S}_f(C) = \mathfrak{S}_f(C_1)$ .

Above theorem works for other function symbols f such as  $f(X) = X^2$ , so the sets of possible dinilpotent proportions in finite rings and in finite PN rings coincide.

However idempotent proportion is not an isoclinism invariant and **the sets of possible idempotent proportions in finite rings and in finite PN rings do not coincide** (B.-Yu. Zelenyuk; work in progress)